ГОСУДАРСТВЕННЙ КОМИTET СССР ПО ТИДPOMETEOPOHOTM

ГОСУДАРСТВЕННЫЙ ОКЕАНОТРАФИЧЕСКИЙ ИНСТИТУТ

Ha npasax pyкописи

AEIYJJAEB WMPAH MAMEIAIM OГתD
7 7 551.465

ТИДРОДИНММИНЕСКОЕ МОДЕЛИРОВАНИЕ BETPOBOIO
IEPEMEIMBAHMG B BEPXHEM CHOE MOPG

TI.00.08 - океанология

ABTOpe电epat
диссертани на соиснание ученои степени งәнидета физико-математических наук

Работа виполнена в Внчислительном Центре при Азербайджансном Государственном Университете им.С.М.Кирова.

Научный руководитель: доктор физико-математичесндх наук В. К. KАЈАІІКИЙ
Официатьные опоненты: донтор физино-математических
наук В.П.КЕОНДПЯН
кандидат физино-математических
наук 10. Д. РЕСНЯНСКИЙ
Ведущая организация: Институт водннх проблем АН СССР.

Запита писсертаиии состоится "24"qe bqaces 1989 г.

ОВПАЯ ХАР~КТЕРИСТИКА РАБОТН

Актуальность темн. Исследованиям структури верхнего слоя моря в современной океанологии уделяется больпое внимание (Краус, І979; Реснянский, 1975, 1976; Калаикий. Нестеров, Нечволодов, Батов, 1975-1988; Фельзенбаум, Арсеньев, Куфтарю ков, Коротаев, I975-1980; Сухоруков, 1988; Меллор, I9731975). Важность этих исследований в основном определяется тем, что они тесно связань с разработкой методов долгосрочного прогноза погоды и климата, гидродинамическими прогнозами, прогнозами рнбннх скоплений и загрязненности тидросферн. Наиболее важнне характеристики верхнего слоя моря - температура и скорость течения формируются в результате взаимодействия атмосферы и океана. Поэтому современное математическое моделирование этого взаимодеиствия невозможно без детального изучения верхнего олоя моря. Одной из основннх задач этого изучения является построение гидродинамической модели ветрового перемешивания в верхнем слое моря. Начальньм этапом при таком моделировании является разработка модели верхнего слоя моря, находямегося под воздействием ветра, в условиях горизонтальной однородности. Именно этому вопросу посвямена диссертапия автора.

Цель даботн состоит в псаледовании процессов фориирования и эволопии скорости течения и температуры в верхнем слое моря, находящегооя под воздвиствнем ветра, ва основе методов математичесвого моделированшя.

Іри внполнении рабогу ставились следуомие задачи:

- разрабогажь матаматдческур модель верхнего слоя моря,

$$
-4-
$$

находящегося под воздействием стадионарного ветра;
.- изучить влияние потока тепа на толшину слоя трения Экмана, воэффициент вертикального оомена количеством движения д ветровой поэфииииент;

- дсследовать роль нестационарного ветра при развитии темения в верхнем слое моря до установившегося состояния;

сфорпулировать интегральный подход к проолеме гидродинамини верхнего слол моря с учетом нестационарности уравне-нии баланса импульса, тепла и энергии турбулентности для переметанного слоя, слоя скачка и термоклина;

- на основании интегрального подхода с использованием "модели плиму" и с учетои диссипативннх сил найти правильное решение (в олличие от полученного ранее решения, дающего незатухашиие периодические колебания, которне не имеют реального фаиичесного смысла).

Цель: работи является такде сопоставление результатов, полученных на основании теории и по данннм наблюдений на гидрологических станцилх в Тихом океане и Каспийском море.

Методм исследования. Для решения поставленннх задач использовались методи математического моделирования, основанние на решении дй̆ұеренциальних уравнений геоф̆изической гидромеханики аналитическими методами и численннми методами с помощъю ЭВМ. Методы исследования велючали сопоставление результатов расчета с эмпирическими данними, полученними на основании наблоденй в природннх условиях.

Научная новизна работн виразается аак в самом подходе к рассматриваемой проблеме, таг и в полученннх результатах.

В качестве математической модели верхнего слоя моря для

задач его динамики, автором предложен обпий попход з рамках интегральной модели. Он основан на использовании уравнений баланса тепиа, количество движения и энергии турбулентности для перемепанного слоя, слоя скачка, моделируемого поверхностью разрнва температури п потока тепла, и термонлина. Задача сведена п решению интегральни уравнений для капдого из этих слоев, причем внутри слоев осушествляется вертикальнал параметризация как температурн, так п скорости течения. Проведено изучение реании верхнего слоя моря на стационарний ветер, ветер, развивающийся до стационарного состояния и меннющийся в течение шториа. Тем самвм дан детальннй анализ синоптической изменчивости верхнего слоя моря. Построеня аналитические репения для одноропного и двухслойного моря и длл стратиф̆иированного моря при супествовании термоклина в условилх развитого вовлечения. При изучении динамики верхнего слол показано, что инерционнне колебания скорости течения B перемешанном слое затухают благодаря учету диссипативних сил в уравнениях движения. Показан вахннй вклад потона тепла в теорию стационарннх чисто дрейфовнх течений Экмана. Наконец, показано, что для отдельных районов океана, например в регионе станции погоды " P " в Тихом океане, одномерная пнтегральная модель правильно описивает реакциь верхнего слол на атмосферное воздеиствие.

Практическая пенность. Результаты полученнне в насгоя-

 шей работе, ивляются важннм практическим шагом в решении задач долгосрочного прогноза погодв и прогноза плимата, а такзе при решении задач мониторинга гидросферы по данным о состоянй атмосферы нап ее поверхностьь. Конкретнне результатв
-6-

диссертации используптся в совместных работах, ведущихся по проблеме Каспийского моря в Государственном океанографическом институте и Вшчислительном Центре при Азербайдханском Государственном университете по договору о содружестве. Результатн, полученнне в работе используются на практике при расчетах морских течений, необходимых пля прогноза распространения сточннх вод в Апшеронском шельфе Каспийского моря в Центре Проблем Каспийского моря института географии Академии наук Азербайджанской ССР.

Апробация раоотн. Оиновнне результатн диссертации докладввались на семинарах Государственного океанографичесного имститута, Вычислительного Центра при Азербайджанском Государственном Университете (1986 -I988), на совещании - семинаре "Моря СССР" в одессе (I986), на Межвузовской школе - семинаре "Системнше исследования и оптимизация развития территориальных единиц" Азербайджанского Государственного Университета (Еаку, 1987). Тезисн доклада о равновесной гл оине ветрового перемешивания в море опубливованы в материалах I/ съезда советских океанологов.

Стоуктура и объем работн. Диссертация состоит из введения, четьрех глав, заключения и списка цитируемой литературн. Общий объем работн составляет $I 25$ страниц, включаюних 30 рисунков и I2I наименований в списке литературы.

COIEPMAHUE PAEOTU

Во введении обоснована актуальность теми диссертации, счормулировани цели и задачи исследования, поназана его вапность и изложена структура работн.

Первая тлава содержит обзор работ по математическому моделированию верхнего слоя моря. Отмечена важная роль Ф̆ундаментального исследования Экмана, посвяценного стапионарным чисто дрейфовым течениям в верхнем слое ллубокого моря. Угазаны различнне направления дальнейего усоверпенствования теории Экмана, в том числе основаннне на использовании уравнения баланса энергии турбулентности. Затем в главе дается обзор работ, в которнх используется иитегральньй подход, основанний на введении верхнего перемешанного слоя моря, слоя скачка температурн и термоклина, Отмечается неооъективность, связанная с тем, что различнне нитегралнне модели строятоя не на основании фактических данных, а исходя из вкусов авторов и их отремления получить как моано онстрее решение поставленной задачи.

Вторая глава посвящена изучениь верхнего перемешанного слоя глубокого моря в рамьах теории Экмана, но с дополнительным учетом потока тепла, пронизиваюшего верхний слой моря.
§ 2.1 содержит предварительнив замечания. Угазнвается на связь работы автора диссертации с предидушими исследованиями. Ставится задача, которая решается в данной главе:
§ 2.2 излагается теория чисто дрейфоовнх течений Экмана (1905) для глубокого моря в условиях стационарности и горизонтальной однородности. Решение находится в зависпмости от жоэффииента вертикального обмена ноличеством двивения или от зжмановской тлубини трения.
§ 2.3 посвящен определениь интегральнои генерацих в рамгах теории экмана. При этом получено внражензе (Куфтарков,

$$
G_{e n}=\pi \frac{G_{1}^{4}}{\Omega D}
$$

в котором $\mathcal{Z}_{\text {_ }}$ - скорость трения на поверхности моря.
Ω - параметр Кориолиса и D - тлубина трения.
§ 2.4. Иэлагается косвенннй метод определения коэффициента вертинального обмена количеством движения и глубинн трения в зависимости от скорости ветра и параметра Кориолиса (Фельзенбаум, I956:).
§ 2.5 посвлмен балансу энергии турбулентности в интегральной форме для верхнего слоя моря. При әтом используется гипотеза о том, что энергия поступаошая в море в результате разрушения ветрових волн, диссипируется в тонком слое непосредственно в зоне разрушения атих волн.
§ 2.6 посвящен режиму Россби-Монтгомери, определяемому как стационарннй режим при отсутствии потока тепла. На основе теории Экмана и с использованием гипотезн Кармана-Россби для масштаба турбулентности в верхнем слое моря показано, что ветровой коэфффициент, определяемый как отношение скорости повепхностного течения к скорости ветра, лвляется постолиной величиной.
§ 2.7 посвлмен основному случаю, когда в теории Экмана учитывается заданннй положительный иоток тепла, не менлюшийся по вертикали. Вначале приводятся известнве ранее решения, полученнне либо без учета интегральной диссипации, либо в нредположении ее пропорциональности интегральной генерации. Триводится еще одно известное ранее решение, основанное на использование гипотезн Кармана-Россби. Отмечается физическая

направоподобность указанннх трех решенид. Дравильное ретение находигся с использованием интегрального аналога обобщенной гипотегч Кармана-Россои

$$
\operatorname{l\sim } \frac{\frac{d i s}{A}}{\frac{d}{d z} \frac{d i s}{A}}
$$

в которой l - характерннй масштаб турбулентности, dis диссипапия, A - коэффициент вертихального обмена количеством движения, Z - вертикальная координата. в результате следует уравнение фельзенбаума

$$
\frac{D}{D_{R}}=(1-c q) \sqrt[4]{1-\frac{1}{3} q}
$$

свлзнвающее глубину трения D © ее значенгем в ремиме Россои-Монтгомери $\left(D_{R} \leadsto \frac{\varepsilon_{\theta}}{\Omega}\right)$ п параметрои $q=m\left(\frac{\Omega D}{\delta_{0}}\right)^{2}$. в котором $m=\frac{8 \hat{8} f^{\circ}}{S \delta_{s}^{2}}$ сезразмерний параметр стратификаиии Казанского-Монина (9 - ускорение сили тлдести, δ коэффициент термического расширения морскои водн。 Γ - кинематическии поток тепла). Решение этого уравнения в аналитвчесной форме затруднено. В диссертации проводится его анализ и. дается численное решение. Затем определнотся коэффиинент вертинального обмена количеством двикендя и ветровой коэфффициент. Оказывается, что за счет полодительного потова тепла в верхнем слов моря коэффииент обмена убнвает, а ветровои жоэфф̆ициепт увеличквается. Напрвмер при $\sigma_{5}=I \mathrm{~cm} \cdot \mathrm{c}^{-I}$, $D=I 0^{-4} \mathrm{c}^{-I}$ (орөдние пирроти), $\Gamma=2 \cdot 10^{-3} \mathrm{~cm} \cdot \mathrm{c}^{-I}\left({ }^{\circ} \mathrm{C}\right)$ тдубина трения D в $I, 5$ раза меньше, коэфдииенч обмена А примерно вдвое моньте, а ветровои коэф̆ициент $K-$ в I, 5 разs больше их соогветствушего sначепип в редмме Россои-

Мопттомери, при ногором поток тепла $\Gamma=0$.
Третья глава посвящена нестационарной интегральной модели верхнего слоя океана, в которой изучается взаимодействие полей температури и поотности морской води с нестационарннми течениями в этом слое.
§ 3.I содержит диӑّеренциальнне уравнения теории, включаопие уравнение состояния морской водн в приближении Буссинеска, уравнения баланса тепла, количества движения и энергии турбулентности. Для рассматриваемхх в диссертации условий горизонтальной одноцлдности эти уравнения, дополненнне рядом соотнонений полуэмпирической теории турбулентности, в число которых входят гипотези Прандтля, Кармана-Россби и Колмогорова, составляют замннутую систтему уравнений, описнваюдую состояние верхнего слоя моря.
§ 3.2 посвящен параметризации температурн в верхнем олое моря, т.е. слое у поверхности моря, в котором заметнн сезоннне и синоптические колебания температури. В этом слое выделяется приповерхностннй перемешанннй (квазиоднородный) слой, слой скачка, описиваемый поверхностью разрнва температурн и термоклин, в котором температура параметризуется по вертикали с помошь кубичеснои параболн. При такой вертикальной структуре температури уравнения баланса тепла для выделенных слоев имеют вид

$$
\begin{aligned}
& h \frac{d T^{0}}{d t}=r^{0}-\Gamma^{h-0}, \\
& \left(r^{0}-T^{h+0}\right) \frac{d h}{d t}=r^{h-0}-r^{h+0} .
\end{aligned}
$$

$$
\frac{3}{4}\left(T^{h+0}-T^{H}\right) \frac{d h}{d t} \div \frac{1}{4}(H-h) \frac{d T^{h+0}}{d t}=r^{h+0}
$$

где h - толиина и T^{0} - температура перемешанного слоя, Γ^{0}, Γ^{h-0} - потоки тепла на его границах, H - толцина верхнего слоя, T^{h+0}, T^{H} - температура на гранщах термоклина, Γ^{h+0} поток тепла в термоклин. Заметим, что если указанная система уравнений решена, то можно найти поток гепла в перемешанном слое и в термоклине:

$$
\begin{aligned}
& \Gamma=\Gamma^{0}-\frac{z}{h}\left(\Gamma^{0}-\Gamma^{h-0}\right) \\
& \Gamma=\frac{1}{4}(H-z)^{4} \frac{d}{d z} \frac{T^{h+0}-T^{H}}{(H-. i)^{3}}
\end{aligned}
$$

§ З.З. содержит описание параметризации скорости течения, согласно которого в перемешанном слое скорость течения не зависит от вертикгльной координаты ("плита") за исключением тонкого приповерхностного подслоя, в котором она резко меняется (такое ве резкое изменение скорости учитнвается в слое скачка). в термоклине задается параболический закон изменения скорости течения по вертикали при котором течение и турбулентнне трения исчезают на нижней границе термоклина. При такой параметризации уравнения баланса количество движения в интегральной форме для выделенннх слоев имеют вид:

$$
\frac{d h U}{d t}=\tau_{x}^{0}-\tau_{x}^{h-0}+U \frac{d h}{d t}+\Omega h V-2 h U
$$

$$
\begin{aligned}
& \frac{d h V}{d t}=\tau_{y}^{0}-\tau_{y}^{h-0}+V \frac{d h}{d t}-\Omega h U-z h V \\
& \left(U-u^{h+0}\right) \frac{d h}{d t}=\tau_{x}^{h-0}-\tau_{x}^{h+0} \\
& \left(V-z^{h+0}\right) \frac{d h}{d t}=\tau_{y}^{h-0}-\tau_{y}^{h+0}
\end{aligned}
$$

$$
\frac{d S_{x T}}{d t}+u^{h+0} \frac{d h}{d t}=\tau_{x}^{h+\theta}+\Omega S_{y T}-2 S_{x T}
$$

$$
\frac{d S_{y T}}{d t}+z^{h+0} \frac{d h}{d t}=\tau_{y}^{h+0}-9 S_{x T}-2 S_{y T}
$$

 составляпие полного потока в термоклине.
§ 3.4 носвнщен параметризании энергии турбулентности в термоклине с помощв параболичеснои зависимости длл средней кинетическоћ энергии турблентннх пульсации B. Для выделенннх слоев получим

$$
\begin{aligned}
& \frac{d B_{h}}{d t}=\varepsilon^{0}-\varepsilon^{h-0}-b^{h-0} \frac{d h}{d t}+G e n_{M}-D i s_{M}-\frac{1}{2} g \delta h\left(\Gamma^{0}+\Gamma^{h-0}\right), \\
& \left(b^{h-0}-b^{h+0}\right) \frac{d h}{d^{\prime}}=\varepsilon^{h-0}-\varepsilon^{h+0}+G e n_{7}-D i s_{7},
\end{aligned}
$$

- I3 -

$$
\begin{aligned}
& \frac{d B_{T}}{d t}=\varepsilon^{h+0}-8^{h+0} \frac{d h}{d t}+G e n_{T}-D i s_{T}-g \delta \int_{h+0}^{H} \Gamma d z, \\
& \text { где } \quad B_{M}=\int_{0}^{h-0} B d z, B_{T}=\int_{h+0}^{H} B d z, \\
& G e n_{M}=\tau^{0} \eta^{0}+\frac{1}{2} U \frac{d h}{d t}-\tau^{h-0} \eta^{0}-\frac{1}{2} \frac{d h \eta^{2}}{d t}-2 h \eta^{2}, \\
& G e n_{J}=\tau^{h-0} \eta^{h+0}+\frac{1}{2} \eta^{h+0} \frac{d h}{d t}-\tau^{h+0} \eta^{h+0}-\frac{1}{2} \eta^{2} \frac{d h}{d t}, \\
& \Gamma=\Gamma^{h+0}-\left(T^{h+0}-T^{h}\right) \frac{d h}{d t}-\frac{1}{4} \frac{d}{d t}\left[\left(T^{h+0}-T^{H}\right)(H-h)\right] .
\end{aligned}
$$

Заметим, что параметризация температури, скорости течения и энергии турбулентности в термонлине связана с автомодельностьш $\eta=\zeta^{n}$, где $\zeta=\frac{H-z}{H-h}$ - оезразмепная вертикальная координата, $\eta=\frac{T-T^{M}}{H-h} \quad H-h, \quad n \neq, \quad n=3$ пля температурн, $\eta=\frac{u}{u^{h+\theta}}=\frac{6}{6^{h+0}} \quad$ и $^{h-h} \quad \eta=\frac{6}{8^{h+0}} \quad$ при $\quad n=2$ для скорости течения и средней нинетической энергии турбулентности.
§ 3.5 содержит решение задачи Полларда-Райнса-Томпсона (I973) о развитии переменанного олоя при оистро меняющихяя ветровнх условиях, когда спираль Экмана не успевает развиться й перемешанный слой реагирует на ветер как твердое тело (модель плити). Конкретно рассматривается случай, когда в состоянии покоя мгновенно возникает ветер, который не менлется во времени. Получено правильное аналитическое решение задачи, которое при неограниченном росте времени выходит на стационарний режим олагодаря учету диссипативного фактора в урағнениях двивения в нолннх потонах (в то время как ретение

Полларда-Райнса-Томпсона, найденное ими без учета этого фактора, дает незатухающие колебания, что неверно с фииической сторони). Помимо полного потока в решении задачи определяется толпнна перемешанного слоя, которая является ограниченной (в решении Като-هиллипса эта толщина неограниченно возрастает такзе в результате неучета диссипативного фактора).

Последняя, четвертая глава диссертации посвящена моделям ветрового перемешивания как в стапионарных условиях, так и в нестационарных, в частности при шторме.
§ 4.I посвящен стационарной модели ветрового перемешивания в верхнем слое моря в случае, когда потока тепла нет, но ниже перемешанного слоя располагается слой скачка, а затем термоклин. По Π - теореме в этом случае толщина перемешанного слоя определяется внраяением

$$
h=\frac{\gamma_{n}}{\Omega} F(m, n),
$$

в котором помимо скорости трения $\delta_{\text {м }}$ и параметра Корполиса Ω вхоляя безразмерння параметра страгийихааиии $m=\frac{N}{\Omega}$ и
 верхней гранйе термоклина, $T^{0}-T^{h}$ - скачок температурн пүи переходе к термоклину и $g \delta$ - параметр плавучести. Согласно оолее ранним результатам $F \sim m^{c}$, тде $c=-I / 3$ по Гарничу-Китайгородскому ($19^{r} / 8$) / $\subset=-2 / 3$ по фпллису и Ка-то-филлипсу/. Недостатком этих решений являетоя отсутствие аслмптотики Россо-Монттомери, для поторов $\Gamma=$ const . В писсертачии атот недостатох устранен и найдено правильное репенке, для готорого эта функция определена в зависимости от घeтмрех коистант так

$$
F=c_{R}\left[1+\frac{c_{R}}{c_{T}} n+\frac{c_{R}}{c_{0}} \frac{m}{1+c_{L} n^{2} m^{-2}}\right]^{-1}
$$

Заметим, что ранее близнии результат бил получен фельзепбаумом (1980) только на основе теории подобщя, в то время как в диссертации он получен более точннм из рассмотрения балачса энергии турбулентности для перемешанного слоя д слоя скачга в cymme.
§ 4.2 содерзит аналитическое решение задачи о внходе на стационар толщины перемешанного слоя в однослоиной и двухслойной моделлх при ветре, виезапно возниншем далее не меняюшимся. Показано, что практичесзия виход на стационарщй реждм осумествляется для однородного моря за. II часов, а пдя двухслойного - за 66 часов, прлчем такая сучественная разнд ца связана с тем, что в однородном море идет чисто динамический процесс, а двухслойном развивается процесс вовлечения при возникновении потока тепла на нижней границе перемешачного слоя.
§ 4.3 досвящен изучению реакции верхнего слоя океана на один из штормов по данннм станции погоды " P " в Тихом океане (50° с.m., 145° з.д.). Исходним материалом явились наблюдения над состоянием атмосберн за указанний период (облачдость, Нлажность, температура воздуха и скорость ветра на высоте флногера). При решении задачи, проведеннои численно по методу Рунге-Кутта, приялекалось уравнение баланса тепла повержности океана с использованием стандартвой методики Нереме"ьевсной (I972) определения составлнюцих тепловогс баланса,

- I6 -

принтой в Іидрометслудбе. В результате решения задачи оьла получена не только толпина и температура перемешанного слол, но и поток тепла на поверхности океана. Полученнле результатн удовлетворительно солласуются с данннми наблюдений, что овидетельствует О возможности использования предлагаемой в диссертании модели при расчетах практическиу задач.

В § 4.3 рассмотрен также вопрос оо определении константн Россби-Монтгомери по данним многосуточной гидрологической станциц в Каспийском море, выполненной при условиях, близних г. стационарнм. Полученное значение этой нонстантн, равное 0.4, близко к значенив определенному ранее по материалам станции " P " (0.36).

ОСНОВНЫЕ РЕЗУЈБТАТЫ И ВЫВОДЫ ПО ДИССЕРТАЦИИ

В заклрчение сфориулированя основнне результать и внвоIн по диссертани:
I. Изучен вопрос о влиннии потока тепла на толщину слоя трения, козффициент вертикального обмена количеством двизения и ветровой поәффиииент в теории Экмана сташионарных чисто дрейовнх течении, причем устранены ошибки, имеюииеся в исследованиях других авторов. Внявлено, что при положительном потоке тепла из атмосферн в море толмина слоя трения и поаффициент вертикального обмена сумественно уменьшается, а ветровой воәффициент - увеличивается. Таким ооразом показано, что при использовании теории Экмана для верхнего слоя моря учет нотока тенла является необходимдм.
2. Препложен общий подход к формулировке и решению задач гидродинамики верхнего слоя моря интегральным методом $с$

учетом нестационарности уравнений движения п баланса энергид туроулентности, уравнений баланса тепла для перемешанного слоя, слоя скачва и термоглина. Елагодаря этому отғрнвается новая перопектива при построении более полних интегралвнах моделей верхнего слоя морл.
3. Изучен вопрос о внходе на стационарннй репим верхнего слоя моря при развитии течения, обусловленного ветром. Показано, ччо стационарное состояние достигаетсл в олучае однородного моря за нескольно часов, а при учете вертаналь ной структуры моря по температуре (двухслойная модель) прй мерно за трое суток.

Таким образом, получен важный внвод о том, что при существовании слоя стачка время выхода на стационарннй релшм резко возрастает.
4. Получено решение задачи и развитии чисто дрейфового течения во времени в "модели плити". Показано, что найденнне ранее решения дают незатухаюние периодичесние нолебанил скорости течения в результате неучета диссипативннх сил. Јчет этого важного фантора позволил автору получить правильное физически обоснованное решение, в отличие от найденного ранее неверного решения.
5. В пачестве практического притожения теории дан расчет характеристик верхнего слоя океана при шторме на станции погода " P " в Тихом океане. При этом получено удовлетьорительное согласие медти результатами расчетов и данннии наблкдений. Таким образом показано, что состояние верхнего слоя моря в районе станции погодв " P " полностьо определяется

состоянием атмосферы над рассматриваемом регионе в рамках одномернои нестанионарной интегральной модели. Кроме того обработанн даннне 0 вертинальном растределении температуры на многосуточнод станции в Каспийском море. При этом в рамках рехиа Россби-Монтгомери найдено значение константи, входящей в соответствушщее соотношение теории .

Основнне результаты диссертации опубликованы в следуюminx работах:
I. Абдуллаев И.М. Об интегральном методе решения дифॉференциалннх уравнений в частных производннх гидротермодинамики верхнего слоя моря. Сб.научн.тр./Азерб. Гос.ун-т. Баky . I987, c.9I-IOO.
2. Абдуллаев И.М. О применении интегрального метода при решении задач гидротермодинамики верхнего слоя моря. - Баку, 1987. - I4 с. - Рукопись представлена Азерб.ун-том. Деп, в АЗНИИНTM, 1987, 「86-A3.
З. Абдуллаев И.М. О равновеснон глубине ветрового перемешивания в море: Тез.догл. ШІ съезда советских океанологов, Ленинград, 1987, - с.I8-19.

Управление статистики Γ_{\odot} Баку зак. 134 I-р. л. тираж IOO Ф̌工. 02061 , KКII ул. Голуоятников- I7, угол Чапаэва

